
Math Modeling, Week 1
A simple learning model
RL, prediction error, error correction
d = R – P
P ' = P + e×d or DP = e×d
P is expectation (prediction), R is outcome (reward), d is prediction error, e is learning rate (internal parameter)

Examples
continuous outcomes: time (travel), reward (amount of food), punishment (pain, temperature)
discrete (binary) outcomes: event or no (food, shock), category A/B

® prediction as probability

Mathematical expression of a verbal theory
What can we do with it?
• Formal derivation: predictions
• Elaborate it: incorporate other theoretical principles

o Models aren’t atomic!
• Simulate
• Evaluate fit to data
• Estimate parameters
• Formulate and test variants embodying competing hypotheses
• Use as measurement device
• Test experimental effects on parameter values

Formal predictions
Constant outcome (R)

DP = e×(R–P)
Equilibrium: no change if P = R
Rate of approach: Z = P–R (deviation). DZ = DP – DR = -eZ. Z' = (1-e)Z
® converges to correct value (R) exponentially, with rate parameter 1-e

Binary outcome, IID Bernoulli
 Outcome as {0,1}
 Rewarded (1) trials: DP = e(1–P)
 Z = P-1, Z ' = (1-e)Z ® convergence to Z=0, P=1
 Non-rewarded (0) trials: DP = -eP
 P ' = (1-e)P, convergence to P=0
 Mixture, Pr[R=1] = a
 <DP> = a×e(1–P) + (1-a)×e(0–P) = e[a×1 + (1-a)×0 – P] = e[a - P]
 <DP> = e<d> = e[<R> – P] = e[a – P]
 equilibrium, <DP>=0, at P = <R> = a
 same exponential convergence, in the mean, but also local sequential effects
 tangent on annealing

Elaborate
RL is model of learning process
Add variable stimuli, and a model of representation
 Feature decomposition, with additive association weights

S = [S1,…,Sn]
P = S×w = ∑i Si×wi

 Dwi = edSi (gradient descent: update each wi in proportion to its contribution)
Rescorla-Wagner (1972): RL È additive feature associations È gradient descent

Simulation
Core matlab code

for t=1:n %loop through trials
p(t) = s(t,:)*w(:,t); %expected outcome
delta = r(t) - p(t); %prediction error
w(:,t+1) = w(:,t) + e*delta*s(t,:)'; %learning update

end
2 cues, binary outcome

Probability matching for response rule: Pr[r = 1] = P
Plot of weight dynamics and response probability for a few cue designs:
• Blocking
• Two partially predictive cues
• One relevant and one irrelevant cue

Fit to data
Likelihood of data, according to model
Gives a number to quantify model fit (other methods too, e.g. SSE)
Pr[R | model] = Õi Pr[Ri | model]
ln Pr[R | model] = Si ln Pr[Ri | model]
Compare model predictions to hypothetical data (graph).

How good? Hard to interpret in vacuum.

Estimate parameters
Plot learning rate vs loglikelihood
Peak is best-fitting model
Can get CI or standard error too
 c2(1) distribution for difference in 2×loglikelihood

Test variants
Separate learning rates
 Dwi = eidSi
More free parameters (one per cue)
Necessarily fits better; significantly so?

Measurement
Psychological interpretation of parameters
Parameter estimate treated as a measurement—data transformation
 Analogy: d'

Effects on parameter values
Comparing conditions or populations
Alternative to comparisons of raw behavior (%correct etc)
Compare estimated e between groups
Often more valid
 Less noise, process-pure
Standard statistics (t-test etc) on parameter estimates (2-step analysis)
Or hierarchical analysis: Takes likelihoods of model into account (accurate error theory)

Exercises

1. Play with the code
a) Execute the 4 blocks of code in order and look at the graphical results.
b) Change the paradigm (1, 2, or 3), and the learning rate, and explore how things change.
c) Test the model on a different paradigm (i.e., cue-outcome schedule), or try something else creative.

2. A pathology with high learning rates
a) What happens if e > ½? Why? (Hint: simulate the model and then look at the values of p.)
b) That was for 2 cues. In general, with k cues, how large can e be before the same pathology appears? How could the model be
modified to avoid this problem?

3. Separate learning rates
a) Modify the code to allow a separate learning rate for each cue.
b) Generate data by simulating the common-e model, then fit it using both the common-e and the separate-e models. The latter will
involve a joint search over ei for all i (I suggest limiting to 2 cues). How much better does the separate-e model fit?
c) Write a loop around steps 3a and 3b, to generate a sampling distribution of the difference in loglikelihood between the two models.
What can you observe about this distribution?

