
Math Modeling, Week 1 
A simple learning model 
RL, prediction error, error correction 
d = R – P 
P ' = P + e×d  or  DP = e×d 
P is expectation (prediction), R is outcome (reward), d is prediction error, e is learning rate (internal parameter) 
 
Examples 
continuous outcomes: time (travel), reward (amount of food), punishment (pain, temperature)  
discrete (binary) outcomes: event or no (food, shock), category A/B 

® prediction as probability 
 
Mathematical expression of a verbal theory 
What can we do with it?  
• Formal derivation: predictions  
• Elaborate it: incorporate other theoretical principles 

o Models aren’t atomic! 
• Simulate 
• Evaluate fit to data 
• Estimate parameters 
• Formulate and test variants embodying competing hypotheses 
• Use as measurement device 
• Test experimental effects on parameter values 

 
Formal predictions 
Constant outcome (R) 

DP = e×(R–P) 
Equilibrium: no change if P = R 
Rate of approach: Z = P–R (deviation). DZ = DP – DR = -eZ.  Z' = (1-e)Z 
® converges to correct value (R) exponentially, with rate parameter 1-e 

Binary outcome, IID Bernoulli 
 Outcome as {0,1} 
 Rewarded (1) trials: DP = e(1–P) 
  Z = P-1, Z ' = (1-e)Z ® convergence to Z=0, P=1 
 Non-rewarded (0) trials: DP = -eP 
  P ' = (1-e)P, convergence to P=0 
 Mixture, Pr[R=1] = a 
  <DP> = a×e(1–P) + (1-a)×e(0–P) = e[a×1 + (1-a)×0 – P] = e[a - P] 
  <DP> = e<d> = e[<R> – P] = e[a – P] 
  equilibrium, <DP>=0, at P = <R> = a 
  same exponential convergence, in the mean, but also local sequential effects 
  tangent on annealing 
 
Elaborate 
RL is model of learning process 
Add variable stimuli, and a model of representation 
 Feature decomposition, with additive association weights 

S = [S1,…,Sn] 
P = S×w = ∑i Si×wi 

 Dwi = edSi (gradient descent: update each wi in proportion to its contribution) 
Rescorla-Wagner (1972): RL È additive feature associations È gradient descent 
 
Simulation 
Core matlab code 

for t=1:n          %loop through trials 
p(t) = s(t,:)*w(:,t);      %expected outcome 
delta = r(t) - p(t);       %prediction error 
w(:,t+1) = w(:,t) + e*delta*s(t,:)';  %learning update 

end 
2 cues, binary outcome 



Probability matching for response rule: Pr[r = 1] = P 
Plot of weight dynamics and response probability for a few cue designs:  
• Blocking 
• Two partially predictive cues 
• One relevant and one irrelevant cue 

 
Fit to data 
Likelihood of data, according to model 
Gives a number to quantify model fit (other methods too, e.g. SSE) 
Pr[R | model] = Õi Pr[Ri | model] 
ln Pr[R | model] = Si ln Pr[Ri | model] 
Compare model predictions to hypothetical data (graph). 

How good? Hard to interpret in vacuum. 
 
Estimate parameters 
Plot learning rate vs loglikelihood 
Peak is best-fitting model 
Can get CI or standard error too 
 c2(1) distribution for difference in 2×loglikelihood 
 
Test variants 
Separate learning rates 
  Dwi = eidSi 
More free parameters (one per cue) 
Necessarily fits better; significantly so? 
 
Measurement 
Psychological interpretation of parameters 
Parameter estimate treated as a measurement—data transformation 
 Analogy: d' 
 
Effects on parameter values 
Comparing conditions or populations 
Alternative to comparisons of raw behavior (%correct etc) 
Compare estimated e between groups 
Often more valid 
 Less noise, process-pure 
Standard statistics (t-test etc) on parameter estimates (2-step analysis) 
Or hierarchical analysis: Takes likelihoods of model into account (accurate error theory) 
 
Exercises 

1. Play with the code 
a) Execute the 4 blocks of code in order and look at the graphical results. 
b) Change the paradigm (1, 2, or 3), and the learning rate, and explore how things change. 
c) Test the model on a different paradigm (i.e., cue-outcome schedule), or try something else creative. 
 
2. A pathology with high learning rates 
a) What happens if e > ½? Why? (Hint: simulate the model and then look at the values of p.) 
b) That was for 2 cues. In general, with k cues, how large can e be before the same pathology appears? How could the model be 
modified to avoid this problem? 
 
3. Separate learning rates 
a) Modify the code to allow a separate learning rate for each cue. 
b) Generate data by simulating the common-e model, then fit it using both the common-e and the separate-e models. The latter will 
involve a joint search over ei for all i (I suggest limiting to 2 cues). How much better does the separate-e model fit? 
c) Write a loop around steps 3a and 3b, to generate a sampling distribution of the difference in loglikelihood between the two models. 
What can you observe about this distribution? 


