A simple learning model
RL, prediction error, error correction
$\delta=R-P$
$P^{\prime}=P+\varepsilon \cdot \delta$ or $\Delta P=\varepsilon \cdot \delta$
P is expectation (prediction), R is outcome (reward), δ is prediction error, ε is learning rate (internal parameter)

Examples

continuous outcomes: time (travel), reward (amount of food), punishment (pain, temperature)
discrete (binary) outcomes: event or no (food, shock), category A/B
\rightarrow prediction as probability
Mathematical expression of a verbal theory
What can we do with it?

- Formal derivation: predictions
- Elaborate it: incorporate other theoretical principles
- Models aren't atomic!
- Simulate
- Evaluate fit to data
- Estimate parameters
- Formulate and test variants embodying competing hypotheses
- Use as measurement device
- Test experimental effects on parameter values

Formal predictions
Constant outcome (R)
$\Delta P=\varepsilon \cdot(R-P)$
Equilibrium: no change if $P=R$
Rate of approach: $Z=P-R$ (deviation). $\Delta Z=\Delta P-\Delta R=-\varepsilon Z . Z=(1-\varepsilon) Z$
\rightarrow converges to correct value (R) exponentially, with rate parameter 1- ε
Binary outcome, IID Bernoulli
Outcome as $\{0,1\}$
Rewarded (1) trials: $\Delta P=\varepsilon(1-P)$
$Z=P-1, Z^{\prime}=(1-\varepsilon) Z \rightarrow$ convergence to $Z=0, \mathrm{P}=1$
Non-rewarded (0) trials: $\Delta P=-\varepsilon P$

$$
P^{\prime}=(1-\varepsilon) P, \text { convergence to } P=0
$$

Mixture, $\operatorname{Pr}[R=1]=\alpha$
$\langle\Delta P>=\alpha \cdot \varepsilon(1-P)+(1-\alpha) \cdot \varepsilon(0-P)=\varepsilon[\alpha \cdot 1+(1-\alpha) \cdot 0-P]=\varepsilon[\alpha-P]$
$<\Delta P>=\varepsilon<\delta>=\varepsilon[<R>-P]=\varepsilon[\alpha-P]$
equilibrium, $\langle\Delta P>=0$, at $P=\langle R\rangle=\alpha$
same exponential convergence, in the mean, but also local sequential effects tangent on annealing

Elaborate
RL is model of learning process
Add variable stimuli, and a model of representation
Feature decomposition, with additive association weights
$\mathbf{S}=\left[S_{1}, \ldots, S_{n}\right]$
$P=\mathbf{S} \cdot \mathbf{w}=\sum_{i} S_{i} \cdot w_{i}$
$\Delta w_{i}=\varepsilon \delta S_{i}$ (gradient descent: update each w_{i} in proportion to its contribution)
Rescorla-Wagner (1972): RL \cup additive feature associations \cup gradient descent

Simulation

Core matlab code
for $\mathrm{t}=1: \mathrm{n} \quad$ \%loop through trials
$\mathrm{p}(\mathrm{t})=\mathrm{s}(\mathrm{t},:)^{*} \mathrm{w}(:, \mathrm{t}) ; \quad$ \%expected outcome
delta $=r(t)-p(t) ; \quad$ \%prediction error
$\mathrm{w}(:, \mathrm{t}+1)=\mathrm{w}(:, \mathrm{t})+\mathrm{e}^{*}$ delta* $\mathrm{s}(\mathrm{t},:)^{\prime} ;$ \%learning update
end
2 cues, binary outcome

Probability matching for response rule: $\operatorname{Pr}[r=1]=P$
Plot of weight dynamics and response probability for a few cue designs:

- Blocking
- Two partially predictive cues
- One relevant and one irrelevant cue

Fit to data

Likelihood of data, according to model
Gives a number to quantify model fit (other methods too, e.g. SSE)
$\operatorname{Pr}[\mathbf{R} \mid$ model $]=\prod_{i} \operatorname{Pr}\left[R_{i} \mid\right.$ model $]$
$\ln \operatorname{Pr}[\mathbf{R} \mid$ model $]=\sum_{i} \ln \operatorname{Pr}\left[R_{i} \mid\right.$ model $]$
Compare model predictions to hypothetical data (graph).
How good? Hard to interpret in vacuum.

Estimate parameters

Plot learning rate vs loglikelihood
Peak is best-fitting model
Can get CI or standard error too
$\chi^{2}(1)$ distribution for difference in $2 \cdot \log$ likelihood

Test variants

Separate learning rates

$$
\Delta w_{i}=\varepsilon_{i} \delta S_{i}
$$

More free parameters (one per cue)
Necessarily fits better; significantly so?

Measurement

Psychological interpretation of parameters
Parameter estimate treated as a measurement-data transformation
Analogy: d^{\prime}

Effects on parameter values

Comparing conditions or populations
Alternative to comparisons of raw behavior (\%correct etc)
Compare estimated ε between groups
Often more valid
Less noise, process-pure
Standard statistics (t-test etc) on parameter estimates (2-step analysis)
Or hierarchical analysis: Takes likelihoods of model into account (accurate error theory)

Exercises

1. Play with the code
a) Execute the 4 blocks of code in order and look at the graphical results.
b) Change the paradigm (1,2 , or 3), and the learning rate, and explore how things change.
c) Test the model on a different paradigm (i.e., cue-outcome schedule), or try something else creative.
2. A pathology with high learning rates
a) What happens if $\varepsilon>1 / 2$? Why? (Hint: simulate the model and then look at the values of p.)
b) That was for 2 cues. In general, with k cues, how large can ε be before the same pathology appears? How could the model be modified to avoid this problem?
3. Separate learning rates
a) Modify the code to allow a separate learning rate for each cue.
b) Generate data by simulating the common- ε model, then fit it using both the common- ε and the separate- ε models. The latter will involve a joint search over ε_{i} for all i (I suggest limiting to 2 cues). How much better does the separate- ε model fit?
c) Write a loop around steps 3 a and 3 b , to generate a sampling distribution of the difference in loglikelihood between the two models. What can you observe about this distribution?
